
Calculando a Área da Abertura da Lente.

Opção nº	Marca	Dist. Focal	f	Modelo	Preço
1	Nikon	50mm	f/1.4	AF-D	\$380.00
2	Nikon	50mm	f/1.8	AF-D	\$160.00
3	Sigma	30mm	f/1.4	EX DC HSM	\$430.00
4	Nikon	35mm	f/1.8	G AF-S DX	\$330.00

Passo 1 – Encontrando a abertura efetiva da lente

A abertura efetiva é calculada pela fórmula: $Abertura_Efetiva_(D) = \frac{Dist \hat{a} n cia_Focal}{f}$

Calculando a Abertura Efetiva para as lentes que selecionei:

Lente 1 -
$$D = \frac{50}{1.4}$$
 $D = 35,714$

Lente 2 -
$$D = \frac{50}{1.8}$$
 $D = 27,777$

Lente 3 -
$$D = \frac{30}{1.4}$$
 $D = 21,428$

Lente 4 -
$$D = \frac{35}{1.8}$$
 $D = 19,444$

Passo 2 – Calculando a Área da abertura da Lente

A área da abertura da lente é calculada pela fórmula $A = \frac{\pi \cdot D^2}{4}$

Calculando a área da abertura para as lentes que selecionei:

Lente 1 -
$$A = \frac{\pi \cdot (35,741)^2}{4}$$
 $A = 1001,54$

Lente 2 -
$$A = \frac{\pi \cdot (27,777)^2}{4}$$
 $A = 605,98$

Lente 3 -
$$A = \frac{\pi \cdot (21, 428)^2}{4}$$
 $A = 360, 63$

Lente 4 -
$$A = \frac{\pi \cdot (19,444)^2}{4}$$
 $A = 296,93$

Conclusões: - a lente que possui maior área de abertura é a opção 1.

- comparando as lentes de 50 mm, a abertura f/1.4 proporciona 60% a mais de abertura em relação a uma f/1.8
- comparando as lentes 30 e 35 mm, a abertura f/1.4 proporciona 82% a mais de abertura em relação a uma f/1.8

Fonte: Livro: Equipamento Fotográfico – Teoria e Prática

Autor: Thales Trigo

Edição: 3ª

Capítulo: 2 – As objetivas – Abertura A ou numero f. – páginas 79 a 83